博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
R语言实现金融数据的时间序列分析及建模
阅读量:5348 次
发布时间:2019-06-15

本文共 2683 字,大约阅读时间需要 8 分钟。

一 移动平均

   移动平均能消除数据中的季节变动和不规则变动。若序列中存在周期变动,则通常以周期为移动平均项数。移动平均法可以通过数据显示出数据长期趋势的变动规律。

  可用filter()函数做移动平均。用法:filter(data,filter,sides)
1、简单移动平均
  简单移动平均就是将n个观测值的平均数作为第(n 1)/2个的拟合值。当n为偶数时,需进行二次移动平均。简单移动平均假设序列长期趋势的斜率不变。
   以我国1992到2014年的季度GDP数据为例。
data<-read.csv("gdpq.csv")
tdata<-ts(data,start=1992,freq=4)
m1<-filter(tdata,filter=c(rep(1/4,4)))
plot(tdata,xlab="时间",ylab="gdp")
lines(m1,col="red",cex=1.5)
   代码运行结果如上图,红色表示拟合值,黑色表示真实值。
2、二次移动平均
   二次移动平均即在一次移动平均的基础上再进行一次移动平均。一般两次移动平均的项数是一致的。二次移动平均假设序列长期趋势的斜率是随时间的变化而变化的。
   二次移动平均长期趋势的拟合公式为:at=2M1t−M2t,其中M1t 表示第一次移动平均的拟合值,M2t表示二次移动平均的拟合值。
   同样以上述数据为例,进行二次移动平均。代码如下:
plot(tdata,type="l",xlab="时间",ylab="季度GDP")
m2<-filter(m1,filter=c(rep(1/4,4)),sides=1)

lines(2*m1-m2,col="red",cex=2)

   代码运行结果如上图所示,红色为二次移动的拟合值。

二 指数平滑
   指数平滑的思想与移动平均是一样的,只是随着时间间隔的增加,加权的权重会呈指数衰减。它认为时间间隔越远的数据对当期数据的影响越小。R调用的函数为
HoltWinters(data, alpha=, beta=, gamma=,seasonal=c(“additive”,”multiple”)…)
1、简单指数平滑
   简单指数平滑假设序列中不存在季节变动和系统的趋势变化。模型公式为:
Xt=axt (1−a)Xt−1,0
a为平滑系数,Xt 为拟合值,xt 为真实值。一般指定X0=x1 ,并且a越大,平滑程度越弱。R语言中有函数可以通过最小化一步预测误差平方和的方法估计出a。以2010年到2014年消费者新心指数为例,并预测2015年前6个月的值。代码如下:
> data<-read.csv("consumer_cf.csv")
> newdata<-ts(data[,2],start=c(2010,1),freq=12)
> plot(newdata,type="o",cex.axis=1.5,cex.lab=1.5,
      xlab="时间",ylab="消费者信心指数")
> a<-HoltWinters(newdata,beta=F,gamma=F)
> b<-HoltWinters(newdata,alpha=0.5,beta=F,gamma=F) #估计参数a
> b
Holt-Winters exponential smoothing without trend and without seasonal component.
Call:
HoltWinters(x = newdata, alpha = 0.5, beta = F, gamma = F)
Smoothing parameters:
 alpha: 0.5
 beta : FALSE
 gamma: FALSE
Coefficients:
      [,1]
a 105.2898
> pdata<-predict(a,6,prediction.interval = T)

> plot(a,pdata,type="o",xlab="时间",ylab="消费者信心指数")

   代码运行结果如上所示。用HoltWinters()函数估计出来的a=0.78,且向后预测值为图中红色部分,黑色为真实值。这种预测方法预测出的值往往不够精确,因为它没有考虑序列中存在的其他变动。

2、Holt_Winters指数平滑
   Holt_Winters指数平滑考虑了序列中存在的季节变动,这种方法对存在季节变动的经济数据有较好的拟合效果,可以用来进行向后预测。
   加法季节模型:
Xt=a∗(xt−st) (1−a)(at−1 bt−1
bt=β∗(Xt−Xt−1) (1−β)bt−1
st=γ∗(xt−Xt) (1−γ)st−p
其中p为季节变动的周期长度。其他含义同上。以上述的GDP数据为例,用HoltWinters指数平滑法分解GDP的水平,斜率及季节变动水平,并预测未来5年的值。代码如下:
> data<-read.csv("gdpq.csv")
> tdata<-ts(data,start=1992,freq=4)
> gdp.hw<-HoltWinters(tdata,seasonal="multi")
> plot(gdp.hw$fitted,type="o",main="分解图")
> plot(gdp.hw,type="o")
> pdata<-predict(gdp.hw,n.ahead=4*5)
> pdata
         Qtr1     Qtr2     Qtr3     Qtr4
2015 149826.6 168126.7 176640.3 192627.9
2016 161252.4 180708.2 189616.2 206523.1
2017 172678.2 193289.7 202592.1 220418.2
2018 184104.1 205871.2 215568.0 234313.4
2019 195529.9 218452.8 228543.8 248208.5
> ts.plot(tdata,pdata,type="o",lty=1:2,col=c("red","black"))
   代码中采用了加法模型。序列的分解图如上图所示。第二个图为模型对数据的拟合图,第三个图的虚线部分为后5年的预测。

 

转载于:https://www.cnblogs.com/amengduo/p/9586526.html

你可能感兴趣的文章
关于空想X
查看>>
CF1067C Knights 构造
查看>>
[BZOJ2938] 病毒
查看>>
webstorm修改文件,webpack-dev-server不会自动编译刷新
查看>>
Scikit-learn 库的使用
查看>>
CSS: caption-side 属性
查看>>
python 用数组实现队列
查看>>
认证和授权(Authentication和Authorization)
查看>>
Mac上安装Tomcat
查看>>
CSS3中box-sizing的理解
查看>>
传统企业-全渠道营销解决方案-1
查看>>
Lucene全文检索
查看>>
awk工具-解析1
查看>>
推荐一款可以直接下载浏览器sources资源的Chrome插件
查看>>
CRM product UI里assignment block的显示隐藏逻辑
查看>>
AMH V4.5 – 基于AMH4.2的第三方开发版
查看>>
Web.Config文件配置之配置Session变量的生命周期
查看>>
mysql导入source注意点
查看>>
linux下编译安装nginx
查看>>
ArcScene 高程不同的表面无法叠加
查看>>